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Renormalization and Quantum Scaling
of Frenkel–Kontorova Models
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We generalise the classical Transition by Breaking of Analyticity for the class of
Frenkel–Kontorova models studied by Aubry and others to non-zero Planck’s
constant and temperature. This analysis is based on the study of a renormaliza-
tion operator for the case of irrational mean spacing using Feynman’s functional
integral approach. We show how existing classical results extend to the quantum
regime. In particular we extend MacKay’s renormalization approach for the clas-
sical statistical mechanics to deduce scaling of low frequency effects and quantum
effects. Our approach extends the phenomenon of hierarchical melting studied by
Vallet, Schilling and Aubry to the quantum regime.

KEY WORDS: Transition by breaking of analyticity; renormalization; quantum
scaling; specific heat.

1. INTRODUCTION

The Frenkel–Kontorova model (FK) is a one-dimensional lattice model
exhibiting incommensurate structures. It is a system of elastically coupled
particles in an external periodic potential (a discrete version of the sine–
Gordon model) with Lagrangian

L(x, ẋ)=
∑

n∈Z

{
ẋ2
n

2
−v

(
xn, xn+1

)
}

, (1)
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where

v
(
x, x′)= 1

2

(
x′ −x

)2 +P
(
x′ −x

)+ u

4π2
cos (2πx) , (2)

with parameters P (“pressure” or −P as tension) and u (amplitude of the
onsite potential). We call successive pairs

(
xn, xn+1

)
bonds and v

(
xn, xn+1

)

the (potential) energy of the bond. Notice that in (1) and (2) the particles’
mass, the elastic coupling strength and the period of the onsite potential
are all scaled to one. The FK model is a particular case of the broader
class of (Generalised) Frenkel–Kontorova models (GFK) with Lagrangian
still given by (1) but the bond energy v is a generic C2 function satisfying

v
(
x +1, x′ +1

)=v
(
x, x′)

∂2v
∂x∂x′

(
x, x′)�−C <0.

In the space of parameters there are two important limits. In the inte-
grable limit, the bond energy, v, depends only on

(
x′ −x

)
. For the FK

model (2) the integrable limit is attained at u=0 and its minimum energy
configurations (i.e. x ∈R

Z such that ∀M <N,VM,N (x) :=∑N−1
n=M v

(
xn, xn+1

)

is minimum for all variations of xn with fixed xM and xN ) are arrays of
equally spaced particles with mean spacing

ρ := lim
−M,N→∞

xN −xM

N −M

simply −P . In the anti-integrable limit(4) the onsite term dominates, which
corresponds to u→∞ in (2). All particles are then in the minima of the
potential and the mean spacing is the closest integer to −P , or any value
in between the two if non-unique.

An interesting set of codimension-2 critical points occur between
these two regimes, often called Transition by Breaking of Analyticity
(TBA): in the space of parameters (u,P ), for each irrational ρ there is a
curve P = Pρ (u) of mean spacing ρ containing a critical value uc (there
may be more than one uc depending on the potential). The regime for u

less than uc is called subcritical (or sliding phase) and above uc supercrit-
ical (or pinned phase)(5) (see Fig. 1). For the FK model with fixed mean
spacing ρ =γ −1, where γ =

(
1+√

5
)

/2 is the golden mean, the TBA is at

the critical value uc �0.971 635 406.(15) This is the case most often studied
in the literature, since it is presumed to be the highest value of u at which
a TBA occurs.
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Fig. 1. Sketch of the TBA along the curve of constant mean spacing ρ = γ −1. The TBA
point corresponding to the critical value uc

(
ρ =γ −1

)
is labelled. For each irrational mean

spacing, ρ, there is a similar curve containing a critical point uc (ρ) (not shown in picture).

For the case of mean spacing ρ =γ −1, relabelling the bonds v appro-
priately(19) as τ and υ results in a Fibonacci sequence of τ s and υs where
each υ-bond is always surrounded by τ -bonds. The TBA point can be
viewed as a fixed point of the renormalization operator that minimises
the energy of the sum of successive υ and τ -bonds with suitably cho-
sen space and energy scalings, α,J ∈ R respectively depending on the
pair (υ, τ ) (actually it is also necessary to subtract a constant and a
quadratic coboundary but we will suppress reference to these inessen-
tial terms).(19) The renormalization operator has a nontrivial fixed point4

(ῡ, τ̄ ) with α � −1.414 836 0 and J � 4.339 143 9. This fixed point corre-
sponds to the critical uc along the curve in (u,P ) for ρ = γ −1, the tran-
sition point between the subcritical and supercritical regimes. It has two
unstable directions: one along the curve of constant mean spacing, with
eigenvalue δ � 1.627 950 0 and the other transverse to this curve in the
(u,P ) plane (which we call the P direction), with eigenvalue η=−J /γ �
−2.681 738 4.(19,20)

Whereas the classical ground states of Frenkel–Kontorova models have
been extensively studied since the beginning of the 1980’s(1−3,5,23) (see also
the review in chapter 1 of ref. 11, and the book(10) for several aspects of the
FK model), the extension to the quantum regime of the classical Transition
by Breaking of Analyticity is still not fully understood. Most of the previ-
ous studies stem from the work of Borgonovi et al.,(8,9) where the authors
do a numerical study of FK model in the supercritical region u > uc for
the case of mean spacing γ −1. They introduce a ‘quantum hull function’
for the expected positions x̄n as the extension of Aubry’s hull function (see

4This has now been proved by Koch(18) by reformulation as a renormalization on
continuous-time Hamiltonian systems and rigorous computer-assisted bounds.
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ref. 11, Section 1.2) as well as the ‘quantum g-function’ (which reduces to
sin (2πx̄n) in the classical limit) and verify that by increasing � the quantum
hull function becomes a smooth version of the classical hull function and
that gn tends to a sawtooth-like map. Similar results have been later obtained
using various numerical or a combination of analytical and numerical
methods.(6,7,16,17)

In a recent numerical study Zhirov et al.(27) claim to observe a ‘quan-
tum phase transition’ in the FK model at a critical value of Planck’s con-
stant between ‘sliding phonon gas’ and a ‘pinned instanton glass’. In fact
we expect that due to KAM-type of arguments, for sufficiently irrational
mean spacing the phonon energy band will survive for a small perturba-
tion of the integrable limit u=0, where the interactions between phonons
of different wavenumber are small. At the anti-integrable limit, on the
other hand, when the dominant interaction is the onsite periodic poten-
tial, the quantum spectrum consists of sets of N degenerate Bloch bands
(N being the total number of particles) whose width is due to tunnelling
or instanton effects between distinct minima of the onsite potential. As u

is decreased from the anti-integrable limit, the periodic potential barrier
decreases and the interaction between degenerate Bloch bands increases
(when compared to u) from zero. The degeneracy between Bloch bands
corresponding to distinct particles should therefore be lifted, widening the
Bloch bands. As we approach the integrable limit, u → 0, these Bloch
bands must merge into a unique phonon band for some non-zero value
uc (�) (possibly not a unique curve corresponding to merging of distinct
bands). We believe that the transition observed in ref. 27 corresponds in
fact to crossing this curve(s) uc (�) at which the merging of Bloch bands
should occur.

In addition to the ground states, it is physically significant to study
the effect of the TBA on the low temperature statistical mechanics of FK
models. This was done for the classical case in ref. 21. The quantum sta-
tistical mechanics of FK models was considered in a series of papers by
Giachetti and Tognetti, e.g. refs. 13, 14, but we are not aware of any work
on the effects of the TBA on the quantum statistical mechanics.

The goal of this article is to study the transition above by extend-
ing the minimum energy renormalization approach in ref. 19 to non-zero
Planck’s constant and temperature, which is done in Section 2. This is
done in a way similar to some extent to the classical non-zero tempera-
ture extension performed in ref. 21, but whereas in the classical partition
function the kinetic and potential contributions decouple, Z = ZP ZX, in
the quantum case this is no longer true and we have to renormalize the
full partition function. Our renormalization analysis therefore requires that
we take into account not only the ground states but also time-periodic
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Fig. 2. Sketch of our strategy: We define a new, quantum, renormalization operator, R,
such that when � → 0 we recover the classical operator Rcgs of ref. 19 and obtain a new
eigenvalue, κ, in the direction of � (the temperature direction is not shown—see text for
details).

solutions in order to extend the renormalization to non-zero Planck’s con-
stant. At this point we stress that although the method is analogous to
that in ref. 21, our analysis is completely independent. In fact, our analy-
sis is valid for the regime β��1 (β is the inverse temperature), whereas in
ref. 21 Planck’s constant is zero (see also Section (2.4), where the relation
between both renormalizations is discussed).

Our strategy can be summarised as follows: we construct a renor-
malization operator, R, which reduces to the ground state operator, Rcgs,
when � goes to zero, i.e. R|�=0 =Rcgs. Then (u,P, . . . ,� =0) is an invari-
ant subspace for R which includes the critical fixed point of renormal-
ization corresponding to the TBA by construction (this is illustrated in
Fig. 2). We then transform the zero temperature results thus obtained (i.e.
scaling of the trace of the kernel) into the non-zero temperature formal-
ism for the quantum partition function. This step is straightforward, since
in Feynman functional integral formulation, the partition function (21) is
simply the traced kernel (4) evaluated at an imaginary time interval T =
−i β �, a procedure sometimes called Wick rotation5 (ref. 22, Section 2.2).
Having obtained the scaling of the quantum partition function, our final
step is to obtain the asymptotic scaling laws for the TBA critical point.

5The Wick rotation therefore relates the quantum mechanics (i.e. dynamics) of a system to
its quantum statistics, and should not be confused with the also well-known equivalence
between quantum statistics of a d dimensional system to the classical statistics of a d + 1
dimensional system.
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In Section 2 we start by introducing the trace of the kernel and
by explaining why this is the chosen physical quantity to apply our
renormalization approach. We then define a decimation procedure ⊕ for
pairs of “bond actions” by doing the trace over intermediate particles
corresponding to a partial trace over the kernel and the renormalization
operator R by composing the decimation with the appropriate scalings.
The quantum eigenvalue κ is also introduced. Next, in Subsection 2.1, we
show that the classical ground state renormalization, Rcgs, is obtained as
the limit of zero Planck’s constant and frequency of quantum renormal-
ization. In Subsection 2.2 the value of the quantum eigenvalue is deter-
mined by analysing the linearised or phonon problem. In Subsection 2.4
the results obtained are ‘Wick rotated’ to obtain the scaling laws for quan-
tum thermal quantities, and an extension of the phenomenon of hierarchi-
cal melting studied by Vallet, Schilling and Aubry(24−26) to the quantum
regime is proposed. Finally, in the last Section 3 the results obtained are
discussed.

2. RENORMALIZATION AND SCALING

We begin by introducing the renormalization procedure for the action
of time-periodic functions of prescribed period. Consider the class of mod-
els with the following formal sum for the action

S (x;T )=
∑

n∈Z

s
(
xn, xn+1;T

)
.

for time-periodic functions xn of period T , where the bond action s is given
by

s
(
x, x′;T

)=
∫ T

0

{
ẋ2

2
−v

(
x, x′)

}
dt, (3)

and v is a GFK bond potential energy. The quantum renormalization will
concern the trace of the kernel which is

K ′ (T ,�)=
∫

D′x e
i
�

S(x;T ),

where the notation D′x means that the integration is to be performed over
the space of periodic paths x with period T and includes the integration
over the endpoints dx (0) (i.e. x (T )=x (0) and D′x =dx (0) Dx).
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The reasons why we consider the trace of the kernel (as opposed
to the kernel itself) are twofold: 1) Our objective is generalise the ren-
ormalization to non-zero temperature and Planck’s constant. Since the
quantum partition function is simply the ‘Wick rotated’ version of K ′,
given by Eq. (21), the analysis of the real-time (i.e. zero temperature) ren-
ormalization operator (6) is readily transformed into an imaginary-time
(i.e. non-zero temperature) renormalization (22). 2) For technical reasons
(which will become clear in Subsection 2.2) we need to restrict to time-
periodic functions to be able to obtain the scaling laws (20–26). This
last point is not a big limitation for zero temperature quantum mechan-
ics because quantum averages of observables (e.g. correlation functions)
could be obtained from derivatives of ln K ′ with respect to source terms if
the appropriate eigenvalues of Rcgs were known.6 Our concern here, how-
ever, is the quantum non-zero temperature case, in which the restriction
of paths to periodic functions is natural since the quantum partition func-
tion, which contains the thermodynamic information, involves making the
trace of the kernel, and therefore restriction to periodic imaginary-time
paths by definition.

Rescaling time t → t/T and defining � = 2π/T the bond action can
be rewritten as

s

(
x, x′; 2π

�

)
= 2π

�

∫ 1

0

{
�2

8π2
ẋ2 −v

(
x, x′)

}
dt, (4)

and now s acts on the space of period-one functions x, x′ : R/Z → R or
loops.

Now let x∈R
Z be a classical ground state and call a bond action s a

τ or an υ as for the renormalization for classical ground states in ref. 19.
For the case of mean spacing γ −1 the sequence of bond actions then
forms an infinite Fibonacci sequence of τ and υ types of bonds where
each υ is always surrounded by τ s. At this point one wants to eliminate all
particles z from sequences of the form υ (x, z;�)+τ

(
z, x′;�

)
(for simplic-

ity we use � as an argument of action bonds instead of 2π/� from now
on). In order to do this define the following decimation operator ⊕ acting
on pairs of bond actions (υ, τ ) as

(υ ⊕ τ)
(
x, x′;�

)=−i� ln
∫

D′z e
i
�

[υ(x,z;�)+τ(z,x′;�)], (5)

6For example, we could obtain the scaling laws for the two particle correlation function
〈xnxk〉 if the eigenvalue of renormalization in the direction λxnxk was known.
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such that exp
[

i
�

(υ ⊕ τ)
(
x, x′;�

)]
is the traced kernel for particle z as a

function of its neighbours x and x′. The decimated functional υ ⊕ τ still
has the form of an action bond in the sense that it acts on pairs of loops(
x, x′), and represents the effective coupling between x and x′, the new

bond action, still unscaled, once z is integrated. The renormalization oper-
ator is defined as the composition of a decimation and scalings as

R
[

τ
(
x, x′;�

)

υ
(
x, x′;�

)
]

= J
ε

[
(υ ⊕ τ)

(
x/α, x′/α;�/ε

)

τ
(
x/α, x′/α;�/ε

)
]

, (6)

which includes a scaling of frequencies, ε, still undetermined at this point.
The global scaling of bond actions is J /ε instead of just J because the
renormalization now acts on actions instead of energies as in the classical
ground state case.

From Eq. (6) we see that the effect of renormalization acting on
action bonds is to eliminate a subsequence of particles through decima-
tion (5), resulting in an equivalent system where the undecimated particles
are now coupled by renormalized action bonds. By performing the compo-
sition of (6) and (5) explicitly the natural scale factor κ =J /ε for Planck’s
constant arises, and R can be seen as acting on the extended space of
(τ, υ,�) for � �0 as

R :

⎧
⎪⎨

⎪⎩

τ̃
(
x, x′;�

)=−iκ�
∫ D′z e

i
κ�

J
ε {υ(x/α,z;�/ε)+τ(z,x′/α;�/ε)}

υ̃
(
x, x′;�

)= J
ε

τ
(
x/α, x′/α;�/ε

)

�̃ =κ�

. (7)

We interpret κ as an eigenvalue of R in the direction of Planck’s constant.
Having constructed the renormalization operator we now want to

find what can this tell us about the physical properties of FK models
when we allow for non-zero �. The complete picture of how R acts on
the full parameter space (the renormalization cascade) is however typi-
cally difficult, if not impossible, to obtain. Fortunately, an analysis of the
fixed points of R gives us some hints on the behaviour of the R cas-
cade. For example, distinct simple fixed points (with only attracting direc-
tions) and their basins of attraction corresponding to distinct phases in
parameter space, and a critical fixed point (with both stable and unstable
directions) with their stable manifolds are usually associated to boundaries
between the distinct types of behaviour for the model. In the following
Subsection 2.1 we will show that, in the limit �,� → 0, this choice of
renormalization operator allows us to recover the the classical ground
state renormalization of ref. 19 (this is shown in Fig. 2 except that the
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� direction is not shown). As was mentioned in the introduction, this
leads us to conclude that the renormalization (7) we introduce has a crit-
ical fixed point in the �,� = 0 subspace, which corresponds to the TBA.
It is therefore a classical ground state fixed point, the boundary between
a sliding or conducting region (subcritical) and a pinned or insulating
one (supercritical). In order to consider how quantum effects change the
behaviour of GFK models, we take into account in Subsection 2.2 the
periodic motions of small �, close to the classical TBA limit at �=0, and
this allows us to determine the eigenvalue κ in the quantum direction.

2.1. Semiclassical Approximation and Ground State Limit

As a first step to connect the quantum renormalization (6) with the
ground state renormalization of ref. 19, one can look at the decimation
operator (5) in the stationary phase approximation for small �:

(υ ⊕ τ)
(
x, x′;�

)= − i� ln
∫

D′z δ
(
z− zcl.

(
x, x′;�

))

× e
i
�
{υ(x,z;�)+τ(z,x′;�)}. (8)

Here zcl.
(
x, x′;�

)
is the classical path of period one satisfying the Euler–

Lagrange equations

δ
[
υ (x, z;�)+ τ

(
z, x′;�

)]

δz

∣∣∣∣∣
z=zcl.(x,x′;�)

=0. (9)

In the classical limit one is thus left with a dynamical problem (9) and the
decimated action (8) can be rewritten as

sta
z∈loops

[
υ (x, z;�)+ τ

(
z, x′;�

)]
, (10)

the sum of bond actions evaluated at z=zcl., given by (9), which stationa-
rises the sum υ + τ over the space of all loops {z : R/Z→R}.

2.1.1. Ground State Limit

The ground state decimation can now be taken as the limit �→0 of
(8) or (10). To see this, notice that in this limit only the classical ground
states contribute to the kernel and

∫
D′z e

i
�
{υ(x,z)+τ(z,x′)} � e− 2π i

��

{
v(υ)(x,z)+v(τ )(z,x′)

}
,
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where
(
x, z,x′) is a segment of a classical ground state and z

(
x,x′) mini-

mises the sum υ + τ . Taking the logarithm and multiplying by −i�, this
results in the decimation (5) being

lim
�→0

[
− �

2π
(υ ⊕ τ)

(
x, x′;�

)]=min
z∈R

[
v(υ) (x, z)+v(τ )

(
z,x′)] (11)

Apart from the limit factor lim�→0 −2π/� this is in fact the classi-
cal ground state decimation in ref. 19 and so the renormalization (6)
becomes7

R
[

τ
(
x, x′;0

)

υ
(
x, x′;0

)
]

� lim
�→0

[− 2π
�

J (
v(υ) ⊕cgs v(τ )

) (
x/α,x′/α

)

− 2π
�

J v(τ )
(
x/α,x′/α

)
]

= lim
�→0

−2π

�
Rcgs

[
v(τ )

(
x,x′)

v(υ)
(
x,x′)

]
, (12)

where ⊕cgs and Rcgs are the decimation and renormalization operators for
the classical ground states, and ε ∈R is still undetermined. The renormal-
ization R has therefore a fixed point (the TBA fixed point), with ground
states of mean spacing ρ =γ −1, in the �=0 subspace consisting of

[
τ̄
(
x, x′;0

)

ῡ
(
x, x′;0

)
]

= lim
�→0

−2π

�

[
v̄(τ )

(
x, x′)

v̄(υ)
(
x, x′)

]
,

where (v̄τ , v̄υ) is the fixed point of the ground state renormalization oper-
ator Rcgs, because applying expression (12) at the TBA fixed point results
in

R
[

τ̄
(
x, x′;0

)

ῡ
(
x, x′;0

)
]

= lim
�→0

−2π

�

[
v̄(τ )

(
x,x′)

v̄(υ)
(
x,x′)

]
=
[

τ̄
(
x, x′;0

)

ῡ
(
x, x′;0

)
]

.

We have thus shown that renormalization (6) behaves in the manner we
intended, namely that we recover the classical ground state renormaliza-
tion8 and that the critical TBA point is still a (necessarily critical) fixed
point of the quantum renormalization R in the classical, zero frequency
subspace.

7We take the formal equality f (�=0) = lim�→0 g (�) with the meaning lim�→0[f (�)/

g (�)]=1, even if both quantities f (�) and g (�) diverge in this limit.
8We recall that the factor −2π/� is due to the fact that we now renormalize bond actions
instead of bond energies, and so has a dimensional origin. Note that we could have for-
mulated renormalization on quantities with dimensions of energy, namely −�/2π×(action
bonds) in Eq. (4), thus avoiding the −2π/� factor in Eq. (12).
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2.2. Renormalization for the Phonon Spectrum

Close to the ground state, for small �2, the relevant contributions are
approximately given by the normal modes or phonons. For a GFK model
at irrational mean spacing ground state, ρ, the phonon spectrum includes
zero in the subcritical regime, but the minimum frequency or phonon gap
is positive above the critical point uc.(5) The phonon contribution to the
trace of the kernel is given by doing a quadratic approximation which is
(with xn =xn + ξn)

K ′
(

x,
2π

�

)
� e− 2π i

��

∑
n v(n)(xn,xn+1) (13)

×
∫

D′ξ e
π i
��

∑
n

∫ 1
0

{
�2

4π2 m(n)(ξ̇n,ξ̇n+1)−u(n)(ξn,ξn+1)
}
dt

,

where the kinetic term was generalised to a symmetric quadratic form in
the velocities

m(n)
(
ξ̇ , ξ̇ ′)=m

(n)
11 ξ̇2 +2m

(n)
12 ξ̇ ξ̇ ′ +m

(n)
22 ξ̇ ′ 2

(as will become clear later on the renormalization operator introduces
coupling between the velocities of neighbouring particles), and u is also a
symmetric quadratic form

u(n)
(
ξ, ξ ′)=u

(n)
22 ξ2 −2u

(n)
12 ξξ ′ +u

(n)
11 ξ ′2.

The first term in (13) is simply the classical ground state and corre-
sponds to (12), so one wants to apply the decimation (5) to the sum of
the quadratic parts of bond actions of the form

π

�

{
�2

4π2

[
m(υ)

(
ξ̇ , ζ̇

)+m(τ)
(
ζ̇ , ξ̇ ′)]−

[
u(υ) (ξ, ζ )+u(τ)

(
ζ, ξ ′)]

}
.

Because this sum is quadratic in the particle to eliminate, ζ , the corre-
sponding functional integral can be calculated (for example by Gaussian
integration of the Fourier transformed sum of action bonds(28)) and the
semiclassical approximation is exact in this case. To first order in �2 the
result is9

9There is possibly also a logarithmic term due to the integration measure which corresponds
to a redefinition of the ground state energy.
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∫
D′ζe

iπ
��

{
�2

4π2 [m(υ)(ξ̇ ,ζ̇ )+m(τ)(ζ̇ ,ξ̇ ′)]−[u(υ)(ξ,ζ )+u(τ)(ζ,ξ ′)]
}

� e
iπ
��

{
�2

4π2 m̃(τ)(ξ̇ ,ξ̇ ′)−ũ(τ )(ξ,ξ ′)
}

,

where m̃(τ) is a new symmetric quadratic form with components given by

m̃
(τ)
11 = m

(υ)
11 + 2m

(υ)
12 u

(υ)
12

u
(υ)
22 +u

(τ)
11

+
(
m

(υ)
22 +m

(τ)
11

)
u

(υ)
12

2

(
u

(υ)
22 +u

(τ)
11

)2

m̃
(τ)
12 = m

(υ)
12 u

(τ)
12 +m

(τ)
12 u

(υ)
12

u
(υ)
22 +u

(τ)
11

+
(
m

(υ)
22 +m

(τ)
11

)
u

(υ)
12 u

(τ)
12

(
u

(υ)
22 +u

(τ)
11

)2
(14)

m̃
(τ)
22 = m

(τ)
22 + 2m

(τ)
12 u

(τ)
12

u
(υ)
22 +u

(τ)
11

+
(
m

(υ)
22 +m

(τ)
11

)
u

(τ)
12

2

(
u

(υ)
22 +u

(τ)
11

)2

and the new form ũ(τ ) has components

ũ
(τ )
11 = u

(υ)
11 − u

(υ)
12

2

u
(υ)
22 +u

(τ)
11

ũ
(τ )
12 = u

(υ)
12 u

(τ)
12

u
(υ)
22 +u

(τ)
11

(15)

ũ
(τ )
22 = u

(τ)
22 − u

(τ)
12

2

u
(υ)
22 +u

(τ)
11

.

With these new quadratic forms, the decimation (5) becomes simply

(υ ⊕ τ)
(
x, x′;�

) = (c.g.s. decimation) (16)

+ 1
�

∫ 1

0
�2m̃(τ)

(
ξ, ξ ′)− ũ(τ )

(
ξ, ξ ′) dt,

where ‘c.g.s decimation’ is the decimation (11). For the renormalization
(6) one also needs the ‘undecimated’ bond actions which correspond to
isolated bond actions of type τ , so one should define also

m̃(υ)
(
ξ, ξ ′)=m(τ)

(
ξ, ξ ′)

ũ(υ)
(
ξ, ξ ′)=u(τ)

(
ξ, ξ ′) . (17)
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For a GFK model (3) at the start of renormalization, for either type τ or
υ of bonds the quadratic forms are m12 = 0, m11 +m22 = 1, ujj = v,jj

(
x,x′)

for j =1,2 and u12 =−v,12

(
x,x′), where the subscripts in v denote differen-

tiation with respect to the first and second variables and
(
x,x′) is a seg-

ment of a classical ground state. Because u is then dependent on
(
x,x′),

after iterating the above transformations (14), (15) and (17) one ends up
with a set of asymptotic quadratic forms depending on the ground state,
m̄

(τ)

x,x′ m̄
(υ)

x,x′ , ū
(τ )

x,x′ and ū
(υ)

x,x′ which scale by factors10 ω=α2ε2/J �1.255 071
for the mass forms and α2/J for the potential forms,(19) i.e.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˜̄m(τ)

x,x′ � α2ε2

J m̄
(τ)

x,x′
˜̄m(υ)

x,x′ � α2ε2

J m̄
(τ)

x,x′
˜̄u(τ)

x,x′ � α2

J ū
(τ )

x,x′
˜̄u(υ)

x,x′ � α2

J ū
(υ)

x,x′

. (18)

Finally, using (14–18), and defining

τ̄
(
x, x′;�

)
:= π

�

[
−v̄(τ )

(
x,x′)

+
∫ 1

0

{
�2

4π2
m̄

(τ)

x,x′
(
ξ, ξ ′)− ū

(τ )

x,x′
(
ξ, ξ ′)

}
dt

]

ῡ
(
x, x′;�

)
:= π

�

[
−v̄(υ)

(
x,x′)

+
∫ 1

0

{
�2

4π2
m̄

(τ)

x,x′
(
ξ, ξ ′)− ū

(τ )

x,x′
(
ξ, ξ ′)

}
dt

]
,

the renormalization (7) at (τ̄ , ῡ,�) becomes

R
⎡

⎣
τ̄
(
x, x′;�

)

ῡ
(
x, x′;�

)

�

⎤

⎦ �
⎡

⎣
τ̄
(
x, x′;�

)

ῡ
(
x, x′;�

)

κ�

⎤

⎦ .

Thus, by including the scaling of frequencies ε�1.649 415 (see footnote 10)
in the renormalization (6), the point (τ̄ , ῡ,0) becomes an approximate fixed

10In ref. 19 the scaling is actually for the quantities an := u
(n−1)
22 + u

(n)
11 , bn := u

(n)
12 , cn :=

m
(n−1)
22 + m

(n)
11 and dn := m

(n)
12 with scaling constants ω � 1.255 071 for an and bn and β/α

for cn and dn, so the first and third equations in (18) are defined up to a quadratic co-
boundary. Here we use the scale factors for frequency ε :=

√
ωJ /α2 �1.649 415 and energy

J =αβ instead. The origin of ω is still a mystery.
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point for small � (actually a line of fixed points parametrised by �). In
particular the phonon spectrum is asymptotically self-similar under scaling
by ε in the direction of �.

Finally, note that fixing ε also determines the eigenvalue in the
�-direction11 as κ =J /ε �2.630 716.

2.3. Scaling of the Kernel

The results in Subsection 2.2 imply that the effect of including both
the frequencies and quantum directions, close to the TBA fixed point (for
�u := u − uc, �P := P − Pγ −1 (uc), � and � small), is that the following
asymptotic relation of bond actions (regarded as functions in parameter
space) holds

(τ, υ) (�u,�P,�,�)� J
ε

(τ, υ) (δ�u,η�P, ε�,κ�) . (19)

If K ′
J,Fm

is the trace of the kernel for a chain of size Fm, the mth Fibo-
nacci number, in the discretised form with J ‘time steps’ (such that K ′

Fm
=

limJ→∞ K ′
J,Fm

), then

K ′
J,Fm

(�u,�P,�,�)�K ′
J,Fm−1

(δ �u,η�P, ε �,κ �)

(√J
|α| ε

)JFm−1

.

(20)

Here the multiplying factor comes from the functional integration measure
due to the change of coordinates (here with diagonal mass components
µ(n) = m̄

(n−1)
22 + m̄

(n)
11 )

∏

n

(
D′

J

xn

α

)
(�,�) =

∏

n

J−1∏

j=0

√
µ(n)�J

4π2i �
dx

(j)
n

|α|

=
∏

n

(√J
|α| ε

)J (D′
J x̃n

)
(ε�, κ�) ,

where x̃n are the positions of the renormalized particles.

11This result was published in ref. 12 containing a mistake: κ = J ε instead of the correct
value κ =J /ε.
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Fig. 3. Proposed splitting of the u−� space into a phonon region and a Bloch region. The
black area represents transitional behaviour, where Bloch spectral bands merge into a unique
phonon band, motivated by our renormalization approach which suggest a transition curve
originating from the TBA point (� = 0) and the results of ref. 27 showing that a transition
region exists for some �>0 when u>uc (�=0).

We stress that the scaling relation (20) is asymptotically exact as we
approach the TBA (classical) point. In our analysis of renormalization
of the phonon contribution leading to (20), we have made use of the
stationary phase approximation, which does not take into account
interactions between degenerate minima (i.e. tunnelling effects), even though
the renormalization (7) does. Yet, Eq. (20) is asymptotically exact in the limit
� → 0 subspace, where tunnelling contributions do not play a role. Tun-
nelling is instead important when � is large, and the numerical results of
ref. 27 show that for � > 0 there is a transition at u>uc (this is illustrated
in Fig. 3).

As we mention in the introduction, our aim is to study non-zero tem-
perature or statistical mechanics problem, in particular to obtain scaling
laws for thermodynamic quantities. Having obtained the scaling Eq. (20)
for the kernel, it is straightforward to obtain an equivalent relation for the
partition function Z by ‘Wick rotation’, which we proceed to do in the
next section.

2.4. Non-zero Temperature Scaling

The quantum partition function at temperature � can be easily
obtained from the trace of the kernel by Wick rotation, i.e. putting
2π/�=−iβ�, where β =1/�. The quantum partition function is then

Z (β�,�)=K ′ (−iβ�,�)=
∫

D′x e−βSE(x;β�), (21)
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where the Euclidean action for the FK model is

SE =
∑

n

sE

(
xn, xn+1;β�

)

=
∑

n

∫ 1

0

{
ẋ2
n

2 (β�)2
+v

(
xn, xn+1

)
}

dtE,

and the integration is now over the rescaled Euclidean time tE ∈ R/Z.
Comparing with (4), the Euclidean bond action sE can be written as

sE

(
x, x′;β�

)=
[
− �

2π
s
(
x, x′;�

)]

�=2π i/β�

,

and has units of an energy instead of an action because of the multiplying
factor �/2π . This gives another direction to which renormalization can be
extended, the temperature direction �=1/β. Define then the operator ⊕E

by ‘Wick rotating’ the operator ⊕ for the trace of the kernel (5), to obtain

(υE ⊕E τE)
(
x, x′;β�

)=−β−1 ln
∫

D′z e−β[υE(x,z;β�)+τE(z,x′;β�)],

and the renormalization as

RE

[
τE

(
x, x′;β�

)

υE

(
x, x′;β�

)
]

=
[J (υE ⊕E τE)

(
x/α, x′/α; εβ�

)

J τE

(
x/α, x′/α; εβ�

)
]

. (22)

Therefore, close to the TBA fixed point the renormalization operator leads
to the corresponding relation to (19) for Euclidean bond actions:

(τE, υE) (�u,�P,β�,�)�J (τE, υE)
(
δ�u,η�P, ε−1β�, κ�

)
, (23)

so under the renormalization RE there is a fixed point at � = 0, β� =∞,
with an unstable eigenvalue of κε = J � 4.339 143 9 in the temperature
direction.

Although this agrees with the scaling of ref. 21 for classical statistical
mechanics, the result here includes the momentum contribution and corre-
sponds to the quantum correction of the low temperature classical result,
in the region � � � in which the classical partition function is not valid
(see ref. 11, Section 3.2). In fact, we think that the classical results in ref.
21 are an indication of the existence of another fixed point of our quan-
tum renormalization operator (22), namely a fixed point for β� = 0. This
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should require that the kinetic part of the classical partition function is
also renormalized (we recall that in ref. 21 the renormalization acts exclu-
sively on the potential contributions) in order to be able to extend the
analysis to non-zero Planck’s constant. The existence of a β� = 0 fixed
point is however independent of our present analysis, and requires further
investigation.

Denoting by ZFm (�u,�P,�,�) the quantum partition function for a
chain of Fm particles at temperature �, regarded as a function in param-
eter space, the renormalization picture leads to

ZFm (�u,�P,�,�)�ZFm−1 (δ �u,η�P,J �,κ �)

(√J
|α| ε

)JFm−1

. (24)

The free energy f = −� limm→∞ ln ZFm/Fm therefore behaves like (using
γ −1 = limm→∞ Fm−1/Fm)

f (�u,�P,�,�)� 1
γJ f (δ �u,η�P,J �,κ �)− �J

γ
ln

(√J
|α| ε

)
, (25)

close to the TBA fixed point, and e = −�2 ∂ (f/�)/∂�, the energy per
particle, like

e (�u,�P,�,�)� 1
γJ e (δ �u,η�P,J �,κ �) .

This leads to the following scaling law for the specific heat per particle at
constant pressure cP = ∂e/∂�:

cP (�u,�P,�,�)�γ −1cP (δ �u,η�P,J �,κ �) . (26)

We note that because we construct a discrete renormalization pro-
cedure, the solutions of our scaling equations allow not only power law
behaviour, but also other types of self-similar behaviour. In particular,
close to the TBA, with �u=�P = 0 for small � and �, Eq. (26) allows
for solutions of the form

cP (�,�)��
ln γ
ln J k (ln �, ln �) , (27)

with k (a + ln J , b+ ln κ) = k (a, b), for all a and b. Taking into account
the findings of refs. 24–26, which show a hierarchical behaviour of ther-
modynamic quantities in the classical case, e.g. through a sequence of
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Fig. 4. Example of the behaviour of cP for the choice of k(a, b)= [c+k+(a, b)+ c−k−(a, b)]

e
−c
(

a
ln J − b

ln κ

)

in Eq. (27) with c = 1/2, c+ = 1, c− = 1/5 and k± = 1 + cos 2π
(

a
ln J ± b

ln κ

)
.

Lighter shading corresponds to larger values of cP (�,�).

increasing jumps (Schottky anomalies) in the specific heat, as temperature
is increased—the hierarchical melting of the chain—, our renormalization
picture suggests that close to the TBA this behaviour extends to the
(�,�)-plane through a the sequence of modulated ridges, invariant under
scaling by (J , κ), of which we show an example in Fig. 4.

3. SUMMARY AND CONCLUSIONS

In summary, we propose a generalisation of the classical Transition
by Breaking of Analyticity by extending the renormalization to non-zero
Planck’s constant and temperature, �. We construct a renormalization
operator adapted to quantum thermodynamics by partial integration of
the partition function, and deduce scaling eigenvalues in the direction of
both � and �. Our main results are the scaling Eq. (23–26) and the tech-
nique for extending the study of a classical ground state critical point to
quantum statistical mechanics by making use of the scaling of the phonon
spectrum.

Our analysis shows that there is a new unstable eigenvalue κ of ren-
ormalization in the � direction. In particular concerning the question of
‘long-range order’, the intuitive picture would be that the non-zero Planck’s
constant regime is attracted to some high �, possibly infinite (i.e. free parti-
cle), limit, where long range order is absent. However, the characterisation
of a system by the analysis of renormalization fixed points is local, limited
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to a small region close to the fixed point, and one should be cautious when
extrapolating the results to regions far from the fixed point. Another factor
that can be of importance is that the behaviour of the system can be dom-
inated by other eigenvalues larger than κ of which we have no knowledge.
To gain a complete picture of the behaviour of Frenkel–Kontorova models
for the full parameter space (including temperature and Planck’s constant)
further investigation, both theoretical and numerical is thus needed.
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